tensorflow object detection API 训练数据集

1. API的安装

官方github地址
下载object_detection和slim文件内容
安装可参照官方文档

2. 制作tfrecord数据集

a. voc2007_to_tfrecord

首先制作voc数据集 通过dataset_tools/create_pascal_tf_record.py进行转换

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Convert raw PASCAL dataset to TFRecord for object_detection.
Example usage:
    #下方代码用于生产tfrecord文件,根据文件目录相应调整。
    python create_pascal_tf_record.py  --data_dir=/home/huazhe/VOCdevkit  --year=VOC2007  --output_path=pascal.record
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import hashlib
import io
import logging
import os

from lxml import etree
import PIL.Image
import tensorflow as tf

from object_detection.utils import dataset_util
from object_detection.utils import label_map_util


flags = tf.app.flags
flags.DEFINE_string('data_dir', '', 'Root directory to raw PASCAL VOC dataset.')
flags.DEFINE_string('set', 'train', 'Convert training set, validation set or '
                    'merged set.')
flags.DEFINE_string('annotations_dir', 'Annotations',
                    '(Relative) path to annotations directory.')
flags.DEFINE_string('year', 'VOC2007', 'Desired challenge year.')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
flags.DEFINE_string('label_map_path', 'person_label_map.pbtxt',
                    'Path to label map proto') #person_label_map.pbtxt文件位置调整
flags.DEFINE_boolean('ignore_difficult_instances', False, 'Whether to ignore '
                     'difficult instances')
FLAGS = flags.FLAGS

SETS = ['train', 'val', 'trainval', 'test']
YEARS = ['VOC2007', 'VOC2012', 'merged']


def dict_to_tf_example(data,
                       dataset_directory,
                       label_map_dict,
                       ignore_difficult_instances=False,
                       image_subdirectory='JPEGImages'):
  """Convert XML derived dict to tf.Example proto.
  Notice that this function normalizes the bounding box coordinates provided
  by the raw data.
  Args:
    data: dict holding PASCAL XML fields for a single image (obtained by
      running dataset_util.recursive_parse_xml_to_dict)
    dataset_directory: Path to root directory holding PASCAL dataset
    label_map_dict: A map from string label names to integers ids.
    ignore_difficult_instances: Whether to skip difficult instances in the
      dataset  (default: False).
    image_subdirectory: String specifying subdirectory within the
      PASCAL dataset directory holding the actual image data.
  Returns:
    example: The converted tf.Example.
  Raises:
    ValueError: if the image pointed to by data['filename'] is not a valid JPEG
  """
  img_path = os.path.join('VOC2007', image_subdirectory, data['filename']) #调整对应图片存放路径
  full_path = os.path.join(dataset_directory, img_path)
  with tf.gfile.GFile(full_path, 'rb') as fid:
    encoded_jpg = fid.read()
  encoded_jpg_io = io.BytesIO(encoded_jpg)
  image = PIL.Image.open(encoded_jpg_io)
  if image.format != 'JPEG':
    raise ValueError('Image format not JPEG')
  key = hashlib.sha256(encoded_jpg).hexdigest()

  width = int(data['size']['width'])
  height = int(data['size']['height'])

  xmin = []
  ymin = []
  xmax = []
  ymax = []
  classes = []
  classes_text = []
  truncated = []
  poses = []
  difficult_obj = []
  if 'object' in data:
    for obj in data['object']:
      difficult = bool(int(obj['difficult']))
      if ignore_difficult_instances and difficult:
        continue

      difficult_obj.append(int(difficult))

      xmin.append(float(obj['bndbox']['xmin']) / width)
      ymin.append(float(obj['bndbox']['ymin']) / height)
      xmax.append(float(obj['bndbox']['xmax']) / width)
      ymax.append(float(obj['bndbox']['ymax']) / height)
      classes_text.append(obj['name'].encode('utf8'))
      classes.append(label_map_dict[obj['name']])
      truncated.append(int(obj['truncated']))
      poses.append(obj['pose'].encode('utf8'))

  example = tf.train.Example(features=tf.train.Features(feature={
      'image/height': dataset_util.int64_feature(height),
      'image/width': dataset_util.int64_feature(width),
      'image/filename': dataset_util.bytes_feature(
          data['filename'].encode('utf8')),
      'image/source_id': dataset_util.bytes_feature(
          data['filename'].encode('utf8')),
      'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')),
      'image/encoded': dataset_util.bytes_feature(encoded_jpg),
      'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
      'image/object/bbox/xmin': dataset_util.float_list_feature(xmin),
      'image/object/bbox/xmax': dataset_util.float_list_feature(xmax),
      'image/object/bbox/ymin': dataset_util.float_list_feature(ymin),
      'image/object/bbox/ymax': dataset_util.float_list_feature(ymax),
      'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
      'image/object/class/label': dataset_util.int64_list_feature(classes),
      'image/object/difficult': dataset_util.int64_list_feature(difficult_obj),
      'image/object/truncated': dataset_util.int64_list_feature(truncated),
      'image/object/view': dataset_util.bytes_list_feature(poses),
  }))
  return example


def main(_):
  if FLAGS.set not in SETS:
    raise ValueError('set must be in : {}'.format(SETS))
  if FLAGS.year not in YEARS:
    raise ValueError('year must be in : {}'.format(YEARS))

  data_dir = FLAGS.data_dir
  years = ['VOC2007', 'VOC2012']
  if FLAGS.year != 'merged':
    years = [FLAGS.year]

  writer = tf.python_io.TFRecordWriter(FLAGS.output_path)

  label_map_dict = label_map_util.get_label_map_dict(FLAGS.label_map_path)

  for year in years:
    logging.info('Reading from PASCAL %s dataset.', year)
    examples_path = os.path.join(data_dir, year, 'ImageSets', 'Main',
                                 FLAGS.set + '.txt') #对应到相应txt文件
    annotations_dir = os.path.join(data_dir, year, FLAGS.annotations_dir)
    examples_list = dataset_util.read_examples_list(examples_path)
    for idx, example in enumerate(examples_list):
      if idx % 100 == 0:
        logging.info('On image %d of %d', idx, len(examples_list))
      path = os.path.join(annotations_dir, example + '.xml')
      with tf.gfile.GFile(path, 'r') as fid:
        xml_str = fid.read()
      xml = etree.fromstring(xml_str)
      data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation']

      tf_example = dict_to_tf_example(data, FLAGS.data_dir, label_map_dict,
                                      FLAGS.ignore_difficult_instances)
      writer.write(tf_example.SerializeToString())

  writer.close()


if __name__ == '__main__':
  tf.app.run()

b. tfrecord制作

首先通过xml_to_csv.py将数据集转换为csv文件,让后通过generate_tfrecord.py生成tfrecord。

3. 训练准备

a. 下载预训练模型

b. config文件修改

在sample/configs/下

# Faster R-CNN with Inception v2, configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
  faster_rcnn {
    num_classes: 1        # 修改这里 改成自己的类数
    image_resizer {
      keep_aspect_ratio_resizer {
        min_dimension: 600
        max_dimension: 1024
      }
    }
    feature_extractor {
      type: 'faster_rcnn_inception_v2'
      first_stage_features_stride: 16
    }
    first_stage_anchor_generator {
      grid_anchor_generator {
        scales: [0.25, 0.5, 1.0, 2.0]
        aspect_ratios: [0.5, 1.0, 2.0]
        height_stride: 16
        width_stride: 16
      }
    }
    first_stage_box_predictor_conv_hyperparams {
      op: CONV
      regularizer {
        l2_regularizer {
          weight: 0.0
        }
      }
      initializer {
        truncated_normal_initializer {
          stddev: 0.01
        }
      }
    }
    first_stage_nms_score_threshold: 0.0
    first_stage_nms_iou_threshold: 0.7
    first_stage_max_proposals: 300
    first_stage_localization_loss_weight: 2.0
    first_stage_objectness_loss_weight: 1.0
    initial_crop_size: 14
    maxpool_kernel_size: 2
    maxpool_stride: 2
    second_stage_box_predictor {
      mask_rcnn_box_predictor {
        use_dropout: false
        dropout_keep_probability: 1.0
        fc_hyperparams {
          op: FC
          regularizer {
            l2_regularizer {
              weight: 0.0
            }
          }
          initializer {
            variance_scaling_initializer {
              factor: 1.0
              uniform: true
              mode: FAN_AVG
            }
          }
        }
      }
    }
    second_stage_post_processing {
      batch_non_max_suppression {
        score_threshold: 0.0
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 300
      }
      score_converter: SOFTMAX
    }
    second_stage_localization_loss_weight: 2.0
    second_stage_classification_loss_weight: 1.0
  }
}
# 这部分为对训练过程进行微调
train_config: {

# batch_size 可根据自己的显存大小调整
  batch_size: 1

  optimizer {
    momentum_optimizer: {
      learning_rate: {
        manual_step_learning_rate {
          initial_learning_rate: 0.0002
          schedule {
            step: 900000
            learning_rate: .00002
          }
          schedule {
            step: 1200000
            learning_rate: .000002
          }
        }
      }
      momentum_optimizer_value: 0.9
    }
    use_moving_average: false
  }
  gradient_clipping_by_norm: 10.0

  fine_tune_checkpoint: "faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt"#对应到下载模型地址

  from_detection_checkpoint: true#使用迁移学习

  # Note: The below line limits the training process to 200K steps, which we
  # empirically found to be sufficient enough to train the COCO dataset. This
  # effectively bypasses the learning rate schedule (the learning rate will
  # never decay). Remove the below line to train indefinitely.
  num_steps: 200000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
}

train_input_reader: {
  tf_record_input_reader {
    input_path: "train.record"# train.record路径
  }
  label_map_path: "label_map.pbtxt"## .pptxt文件地址
}

eval_config: {
  num_examples: 1000
  # Note: The below line limits the evaluation process to 10 evaluations.
  # Remove the below line to evaluate indefinitely.
  max_evals: 10
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: "val.record"
  }
  label_map_path: "label_map.pbtxt"
  shuffle: false
  num_readers: 1
}

c. .pbtxt文件

#内容如下 data/文件夹下有模板
item {
  id: 1
  name: 'person'
}

4. 训练模型

a. model_main .py

python object_detection/model_main.py  #model_main.py 对应位置
 --alsologtostderr \
 --pipeline_config_path=faster_rcnn_resnet50_coco.config \  #config文件对应位置
 --model_dir=save_model \ #训练模型储存位置
 --num_train_steps=50000 \ 
 --num_eval_steps=2000

b. train .py(旧版 legacy/)

python object_detection\legacy\train.py 
 --logtostderr \
 --train_dir=save_model \ #模型保存位置
 --pipeline_config_path=faster_rcnn_inception_v2_coco.config #对应config位置

5. tesorboard

tensorboard --logdir=model #model 位置

6. 模型转换

python export_inference_graph.py \ 
 --input_type image_tensor \ 
 --pipeline_config_path ssd_mobilenet_v1_coco.config \  --trained_checkpoint_prefix model.ckpt-100000 \  #这里要根据自己训练的次数修改model.ckpt-10000的数字
 --output_directory person_inference_graph #输入转换后保存模型的地址